От сглаза и порчи

Теорема доказанная в 1994. Великая теорема Ферма: доказательство Уайлса и Перельмана, формулы, правила расчета и полное доказательство теоремы. Научный путь сэра Эндрю

Эндрю Уайлс — профессор математики Принстонского университета, он доказал Великую теорему Ферма, над которой не одно поколение учёных билось сотни лет.

30 лет над одной задачей

Впервые Уайлс узнал о последней теореме Ферма, когда ему было десять лет. Он зашел по дороге из школы домой в библиотеку и увлёкся чтением книги «Последняя задача» Эрика Темпла Белла. Возможно сам того ещё не зная, но с этого момента он посвятил свою жизнь поискам доказательства, несмотря на то, что это было то, что ускользало от лучших умов на планете в течение трёх веков.

Уайлс узнал о последней теореме Ферма, когда ему было десять лет


Он нашёл его 30 лет спустя после доказательства другим учёным, Кеном Рибетом, связи теоремы японских математиков Таниямы и Симуры с Великой теоремой Ферма. В отличие от скептически настроенных коллег, Уайлс сразу понял — вот оно, и через семь лет поставил точку в доказательстве.

Сам процесс доказательства выдался очень драматичным: Уайлс завершил свой труд в 1993-м году, но прямо во время публичного выступление нашел в своих рассуждениях существенный «пробел». Два месяца ушло на поиск ошибки в вычислениях (ошибка крылась среди 130 печатных страниц решения уравнения). Далее, полтора года велась напряжённая работа над исправлением ошибки. Всё научное сообщество Земли было в недоумении. Уайлс завершил свою работу 19 сентября 1994-го года и сразу же и представил её обществу.

Пугающая слава

Больше всего Эндрю боялся славы и публичности. Он очень долгое время отказывался от выступлений по телевидению. Считается, что его смог переубедить Джон Линч. Он заверил Уайлса в том, что тот мог вдохновить новое поколение математиков и показать мощь математики общественности.

Эндрю Уайлс долгое время отказывался от выступлений по телевидению


Немногим позже, благодарное общество начало награждать Эндрю премиями. Так 27 июня 1997 года Уайлс получил премию Вольфскеля, которая приблизительно составила $50 000. Это намного меньше, чем Вольфскель намеревался оставить столетием раньше, но гиперинфляция привела к сокращению суммы.

К сожалению, математический эквивалент Нобелевской премии — премия Филдса, Уайлсу попросту не досталась из-за того, что её вручают математикам моложе сорока лет. Вместо этого он получил специальную серебряную тарелку на церемонии вручения медали Филдса в честь его важного достижения. Уайлс также выиграл престижную премию Вольфа, премию короля Файзала и многие другие международные награды.

Мнения коллег

Реакция одного из самых известных современных российских математиков академика В. И. Арнольда на доказательство «активно скептична»:

Это не настоящая математика — настоящая математика геометрична и сильна связями с физикой. Более того, сама проблема Ферма по своей природе не может генерировать развитие математики, поскольку она «бинарна», то есть, формулировка проблемы требует дать ответ только на вопрос «да или нет».

Вместе с тем, математические работы последних лет самого В. И. Арнольда во многом оказались посвящены вариациям на очень близкую теоретико-числовую тематику. Возможно, что Уайлс парадоксальным образом стал косвенной причиной этой активности.

Настоящая мечта

Когда Эндрю спрашивают, как ему удалось просидеть в четырёх стенах более 7 лет, занимаясь одной задачей, Уайлс рассказывает, как мечтал во время своей работы, что настанет время, когда курсы математики в вузах, и даже в школах, будут подстроены под его метод доказательства теоремы. Ему хотелось, чтобы само доказательство Великой теоремы Ферма стало не только модельной математической задачей, но и методологической моделью для преподавания математики. Уайлс представлял, что на её примере можно будет изучать все основные разделы математики и физики.

4 дамы, без которых не было бы доказательства

Эндрю женат и имеет троих дочерей, двое из которых родились «в семилетнем процессе первого варианта доказательства».

Сам Уайлс считает, что без своей семьи у него бы ничего не вышло


В эти годы только Нада, жена Эндрю, знала о том, что он штурмует в одиночку самую неприступную и самую знаменитую вершину математики. Именно им, Наде, Клэр, Кэйт и Оливии посвящена знаменитая финальная статья Уайлса «Модулярные эллиптические кривые и Последняя теорема Ферма» в центральном математическом журнале «Annals of Mathematics», где публикуются наиболее важные математические работы. Впрочем, сам Уайлс нисколько не отрицает, что без своей семьи у него бы ничего не вышло.

Теорема Ферма дразнила математиков более трех веков, хотя она проста на вид, а сам Ферма уверял, что знает, как ее доказать, одна беда - места не хватает записать. Доказать проклятую теорему удалось ученому из Принстона Эндрю Уайлсу около 10 лет назад. «Чердак» вспоминает историю, пожалуй, самого знаменитого доказательства в истории математики.

Уайлсу потребовались годы работы и знание самых современных разделов математики. Недавно он получил за это достижение премию, которую называют Нобелевкой для математиков. При этом формулировка теоремы Ферма крайне проста: она утверждает, что нет таких целых значений x , y и z , для которых бы выполнялось равенство x n +y n =z n при n больше 2. Эту теорему сформулировал французский математик Пьер де Ферма в XVII веке. Читая «Арифметику» Диофанта, он записал уравнение на полях, в той части книги, где речь шла о теореме Пифагора.

Заметки на полях

Теорема Пифагора известна каждому, кто в школе хотя бы иногда не прогуливал математику: в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Теорема была доказана, как можно догадаться, Пифагором, а уже его ученики доказали, что существует бесконечное множество так называемых пифагорейских троек - целых чисел, для которых выполняется условие x 2 +y 2 =z 2 . Например, 3 2 +4 2 =5 2 или 99 2 +4900 2 =4901 2 .

Ферма задался вопросом: а что если вместо квадратов в формуле будут кубы: x 3 +y 3 =z 3 ? Можно ли для такого равенства найти красивые тройки целых чисел? А если в показателе степени будет стоять 4? А если 5? Ферма утверждал, что если показатель степени больше двух, то таких троек целых чисел не существует. Рядом с формулировкой теоремы Ферма оставил коварную запись: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его». В чем заключалось это доказательство, он так никому и не сообщил.

В обычной жизни Ферма был крупным провинциальным чиновником, а наукой занимался в свободное от работы время. В то время среди математиков было не очень-то принято делиться с коллегами своими результатами. Ферма же выделялся особенной замкнутостью даже среди коллег: он мало с кем обсуждал свои идеи, а когда ему удавалось найти интересное решение сложной математической задачи, он развлекался тем, что отправлял товарищам-математикам формулировки этих задач, но не их решения. Публиковать свои математические выкладки он тоже не стремился.

Французский чиновник и математик Пьер де Ферма

Знаменитая теорема не канула в Лету вместе с другими открытиями Ферма лишь благодаря тому, что старший сын эксцентричного ученого-любителя после смерти отца взялся опубликовать все его отрывочные заметки. В них обнаружилось множество интересных и важных для математики теорем - часто без доказательств или лишь с набросками таковых. С тех пор все они были доказаны, и только уравнение, известное теперь как теорема Ферма, упорно не поддавалось.

Загадка на века

Простота формулировки и замечание, оставленное Ферма по поводу доказательства теоремы, дразнили профессионалов и любителей математики на протяжении веков. Ведь Ферма располагал теми же знаниями, что и его современники, значит, для доказательства теоремы требовалось лишь сделать какой-то необычный ход.

В истории попыток доказать, что «нужных» троек целых чисел не существует, порой случались небольшие прорывы. Так, через сто лет после Ферма Леонарду Эйлеру удалось доказать, что теорема верна при n =3. Другие математики доказали теорему для еще нескольких частных случаев или же намечали возможные подступы к решению задачи. Во второй половине XX века стали доступны компьютеры и математикам удалось показать, что теорема Ферма верна при значениях n от 2 до 500, затем счет пошел на тысячи, затем на миллионы, однако все это по-прежнему не означало, что утверждение Ферма верно для любых значений n .

Дело жизни

Таково было положение дел, когда о теореме впервые узнал десятилетний Эндрю Уайлс. Он загорелся идеей доказать ее, и эта мысль не оставляла ученого на протяжении всей математической карьеры.

Во второй половине 1980-х годов Уайлс полностью сосредоточился на теореме Ферма. Он продолжал преподавать в Принстонском университете, но отказался от участия в конференциях и любой другой публичной деятельности. Уайлс никому не рассказывал о своей цели: во-первых, ему не хотелось тратить время на обсуждения, во-вторых, в случае успеха слава досталась бы ему одному. А в третьих, его могли просто не принять всерьез - уж больно много чудаков и сумасшедших покушалось до него на доказательство великой теоремы. Он понимал, что ему потребуются годы работы и боялся, что, если он будет рассказывать о своей работе, в последний момент решающий шаг сделает кто-то другой. Для того чтобы не вызывать подозрений, Уайлс воспользовался одним из своих исследований, посвященных эллиптическим кривым. Оно было завершено, но математик публиковал его по кусочкам, притворяясь, что продолжает свои исследования в этой области. В тайну своей настоящей работы Уайлс посвятил только жену, и многие коллеги ученого начали считать, что его «исчезновение» связано с тем, что бедняга исчерпал свой математический талант.

Эндрю Уайлс у памятника Пьеру де Ферма. Фото: Klaus Barner/Wikipedia

В 1988 году, когда Уайлс вовсю работал над своим доказательством, японский математик Иоичи Мияока заявил, что ему удалось «взломать» теорему Ферма. Математики всего мира принялись изучать выкладки Мияоки и, к несчастью для него, в рассуждениях обнаружились серьезные пробелы, так что Уайлс продолжил работу.

Однако к 1991 году математик перебрал все доступные ему инструменты, а теорема Ферма все еще не поддавалась. Уайлсу пришлось прервать отшельничество, чтобы пообщаться с коллегами и выяснить, нет ли у тех каких-нибудь новых идей, полезных для его работы. И такие идеи нашлись - работа Уайлса сдвинулась с мертвой точки, и он уже предвидел успех, однако математику нужно было проверить все созданные выкладки. Уайлсу требовался эксперт, владеющий всеми тонкостями использованных им методов, однако это означало, что этого человека придется посвятить в свой замысел. И Уайлс доверился своему коллеге в Принстоне Нику Катцу.

Эксперту предстояло разобраться в работе, которую Уайлс вел в течение нескольких лет. Подступиться к такому объему материала было непросто, и Уайлс с Катцом нашли изящный выход. Уайлс объявил курс лекций для аспирантов с весьма расплывчатым названием «Вычисления по поводу эллиптических кривых». На лекциях Уайлс детально излагал ту часть доказательства, в которой он не был уверен и которая нуждалась в проверке. Только Катц знал, к чему все эти выкладки, для всех остальных слушателей это был просто курс лекций, причем крайне сложный, очень детальный и не очень понятно, к чему применимый. Постепенно слушатели разбежались, и в конце концов в аудитории на лекциях присутствовали лишь сами Уайлс и Катц.

Теорема доказана...

Проверка позволила убедиться, что в доказательстве Уайлса нет пробелов. В 1993 году он был уверен, что в его работе все верно. Ученый представил результат своих трудов на крупном математическом симпозиуме в Кембридже в конце июня 1993 года.

Весть о том, что теорема Ферма доказана, наделала много шуму. Тем более что для завершения работы Уайлсу потребовалось сначала доказать так называемую гипотезу Таниямы-Шимуры. Для математиков она не менее, а может быть даже более важна, чем собственно теорема Ферма, так как позволяет установить связь между разделами математики, ранее казавшимися крайне далекими друг от друга. В прессе поднялась шумиха, и Уайлс стал знаменитостью.

...или все-таки нет?

Он отправил свое доказательство для публикации в научный журнал, и шестеро рецензентов принялись за тщательную проверку его выкладок, занимавших 200 страниц. Одна из частей доказательства попала на проверку Катцу. С большинством вопросов, возникающих у рецензентов, Уайлс легко справлялся, однако у Катца возник небольшой вопрос, на который автор доказательства не смог сразу ответить. И чем больше он углублялся в разъяснения, тем очевиднее становилось, что речь идет не о небольшой ошибке, а о серьезной проблеме, пропущенной Катцом и Уайлсом, даже несмотря на устроенный ими курс лекций именно по самой «проблемной» части доказательства.

Уайлс надеялся «починить» доказательство, найдя способ устранить ошибку, но ему это никак не удавалось, и среди математиков поползли слухи, что и на этот раз доказательство теоремы Ферма не выдержало критики. Конечно, Уайлсом и без того была проделана огромная работа, которая дала много важных результатов, но он хотел доказать теорему Ферма, и для него найденная ошибка была кошмаром.

Уайлс снова скрылся от публики и работал лишь с одним из рецензентов своей статьи (и по совместительству бывшим аспирантом) Ричардом Тейлором. Тейлор для этого специально приехал в Принстон. Все лето 1994 года они искали решение проблемы и не нашли. Уайлс уже готов был смириться с поражением, но Тейлор уговорил его продолжить поиски до октября, когда Тейлору нужно было уезжать.

Не надеясь найти решение, Уайлс, по крайней мере, решил понять, почему в его выкладки вкралась ошибка. Утром 19 сентября 1994 года математик сидел в своем кабинете, изучая использованные им методы доказательства, и внезапно его озарило. Он понял, что нужно сделать, чтобы его доказательство снова заработало. Наконец-то он смог отправить статью с доказательством теоремы Ферма, а также совместную с Тейлором статью с необходимыми дополнительными доказательствами в редакцию журнала Annals of Mathematics . Эти работы были опубликованы в 1995 году. Теорема Ферма была доказана,теперь - без всяких сомнений.

Грандиозная шутка

И все же в этой истории осталась одна загадка. Три с половиной века математики бились над теоремой Ферма, а ее доказательство потребовало использования самых современных методов и доказательства другой важной теоремы, сформулированной лишь в XX веке. Всего этого во времена Ферма просто не было. Действительно ли он располагал «поистине удивительным доказательством» своей теоремы? Есть подозрение, что нет, ибо в записках Ферма остались следы поисков решений при n =4 и n =5, что было бы излишне, будь у математика доказательство теоремы в общем виде. Но даже если самонадеянный математик-затворник ошибся, значение созданной им интриги трудно переоценить. Ощущение, что «истина где-то рядом» вдохновляло на поиски решения многих математиков, и кто знает, как сложилась бы судьба теоремы, не будь она столь популярна.

August 5th, 2013

В мире можно найти не так уж много людей, ни разу не слы-шавших о Великой теореме Ферма — пожалуй, это единственная математическая задача, получившая столь широкую известность и ставшая настоящей легендой. О ней упоминается во множестве книг и фильмов, при этом главный контекст почти всех упоми-наний — невозможность доказать теорему.

Да, эта теорема очень известна и в некотором смысле стала «идолом», которому поклоняются математики-любители и про-фессионалы, но мало кому известно о том, что ее доказательство найдено, а произошло это в уже далеком 1995 году. Но обо всем по порядку.

Итак, Великая теорема Ферма (нередко называемая послед-ней теоремой Ферма), сформулированная в 1637 году блестя-щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова-нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.

Почему она так знаменита? Сейчас узнаем...

Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма - задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство - даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста - на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.

То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 - действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота - кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац - а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) - не получается. Не хватает кубиков, или остаются лишние:


А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.



После Ферма над поиском доказательства работали такие ве-ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),


Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа-тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.

Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…

Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:

Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау

В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.

В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы - геометрические объекты, а эллиптические уравнения - алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник - модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы-Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы-Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы-Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы-Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы-Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.

Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен-ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи-ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?


На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер-ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио-нальные ученые) брошены на поиски простого и лаконичного до-казательства, однако этот путь, скорее всего, не приведет никуда...

источник

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.


Почему она так знаменита? Сейчас узнаем...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:





А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау











В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.




В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.







Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?






На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...

Судя по популярности запроса "теорема Ферма - краткое доказательство", эта математическая проблема действительно многих интересует. Эта теорема была впервые высказана Пьером де Ферма в 1637 году на краю копии "Арифметики", где он утверждал, что у него было ее решение, оно было слишком велико для того, чтобы поместиться на краю.

Первое успешное доказательство было опубликовано в 1995 году - это было полное доказательство теоремы Ферма, осуществленное Эндрю Уайлсом. Оно было описано как «ошеломляющий прогресс», и привело Уайлса к получению премии Абеля в 2016 году. Будучи описанным относительно кратко, доказательство теоремы Ферма также доказало большую часть теоремы модульности и открыло новые подходы к многочисленным другим проблемам и эффективным методам подъема модульности. Эти свершения продвинули математику на 100 лет вперед. Доказательство малой теоремы Ферма сегодня не является чем-то из ряда вон выходящим.

Неразрешенная проблема стимулировала развитие алгебраической теории чисел в XIX веке и поиск доказательства теоремы модульности в XX веке. Это одна из самых заметных теорем в истории математики и до полного доказательства великой теоремы Ферма методом деления она была в Книге рекордов Гиннеса как «самая сложная математическая проблема», одной из особенностей которой является то, что она имеет наибольшее количество неудачных доказательств.

Историческая справка

Пифагорейское уравнение x 2 + y 2 = z 2 имеет бесконечное число положительных целочисленных решений для x, y и z. Эти решения известны как троицы Пифагора. Примерно в 1637 году Ферма написал на краю книги, что более общее уравнение a n + b n = c n не имеет решений в натуральных числах, если n является целым числом, большим чем 2. Хотя сам Ферма утверждал, что имеет решение своей задачи, он не оставил никаких подробностей о ее доказательстве. Элементарное доказательство теоремы Ферма, заявленное ее создателем, скорее было его хвастливой выдумкой. Книга великого французского математика была обнаружена спустя 30 лет после его смерти. Это уравнение, получившее название «Последняя теорема Ферма», в течение трех с половиной столетий оставалось нерешенным в математике.

Теорема в конечном итоге стала одной из самых заметных нерешенных проблем математики. Попытки доказать это вызвали существенное развитие теории чисел, и с течением времени последняя теорема Ферма получила известность как нерешенная проблема математики.

Краткая история доказательств

Если n = 4, что доказано самим Ферма, достаточно доказать теорему для индексов n, которые являются простыми числами. В течение следующих двух столетий (1637-1839) гипотеза была доказана только для простых чисел 3, 5 и 7, хотя Софи Жермен обновляла и доказывала подход, который имел отношение ко всему классу простых чисел. В середине 19 века Эрнст Куммер расширил это и доказал теорему для всех правильных простых чисел, в результате чего нерегулярные простые числа анализировались индивидуально. Основываясь на работе Куммера и, используя сложные компьютерные исследования, другие математики смогли расширить решение теоремы, имея цель охватить все основные показатели до четырех миллионов, но док-во для всех экспонентов по-прежнему было недоступным (это означает, что математики обычно считали решение теоремы невозможным, чрезвычайно сложным, или недостижимым с современными знаниями).

Работа Шимуры и Таниямы

В 1955 году японские математики Горо Шимура и Ютака Танияма подозревали, что существует связь между эллиптическими кривыми и модульными формами, двумя совершенно разными областями математики. Известная в то время, как гипотеза Танияма-Шимура-Вейля и (в конечном счете) как теорема модульности, она существовала сама по себе, без видимой связи с последней теоремой Ферма. Она сама по себе широко рассматривалась как важная математическая теорема, но при этом считалась (как и теорема Ферма) невозможной для доказательства. В то же время доказательство великой теоремы Ферма (методом деления и применения сложных математических формул) было осуществлено лишь полвека спустя.

В 1984 году Герхард Фрей заметил очевидную связь между этими двумя ранее не связанными и нерешенными проблемами. Полное подтверждение того, что две теоремы были тесно связаны, было опубликовано в 1986 году Кеном Рибетом, который основывался на частичном доказательстве Жана-Пьера Серра, который доказал все, кроме одной части, известной как «гипотеза эпсилона». Проще говоря, эти работы Фрея, Серра и Рибе показали, что если бы теорема о модульности могла быть доказана, по крайней мере, для полустабильного класса эллиптических кривых, то и доказательство последней теоремы Ферма также рано или поздно будет открыто. Любое решение, которое может противоречить последней теореме Ферма, может также использоваться, чтобы противоречить теореме модульности. Поэтому, если теорема о модульности оказалась истинной, то по определению не может существовать решение, противоречащее последней теореме Ферма, а значит она вскоре должна была быть доказана.

Хотя обе теоремы были сложными проблемами для математики, считающимися нерешаемыми, работа двух японцев стала первым предположением о том, как последняя теорема Ферма могла бы быть продолжена и доказана для всех чисел, а не только для некоторых. Важным для исследователей, выбравших тему исследования, был тот факт, что в отличие от последней теоремы Ферма, теорема модульности была основной активной областью исследований, для которой было разработано доказательство, а не только исторической странностью, поэтому время, затраченное на ее работу, могло быть оправдано с профессиональной точки зрения. Однако общее мнение заключалось в том, что решение гипотезы Таниямы-Шимуры оказалось нецелесообразным.

Великая теорема Ферма: доказательство Уайлса

Узнав, что Рибет доказал правильность теории Фрея, английский математик Эндрю Уайлс, с детства интересующийся последней теоремой Ферма и имеющий опыт работы с эллиптическими кривыми и смежными областями, решил попытаться доказать гипотезу Таниямы-Шимуры, как способ доказать последнюю теорему Ферма. В 1993 году, спустя шесть лет после объявления о своей цели, тайно работая над проблемой решения теоремы, Уайльсу удалось доказать смежную гипотезу, что, в свою очередь, помогло бы ему доказать последнюю теорему Ферма. Документ Уайлса был огромным по размеру и масштабу.

Недостаток был обнаружен в одной части его оригинальной статьи во время рецензирования и потребовал еще один год сотрудничества с Ричардом Тейлором, чтобы совместно решить теорему. В результате окончательное доказательство Уайлсом великой теоремы Ферма не заставило долго себя ждать. В 1995 году оно было опубликовано в куда меньшем масштабе, чем предыдущая математическая работа Уайлса, наглядно показывая, он не ошибся в своих предыдущих выводах о возможности доказательства теоремы. Достижение Уайлса было широко растиражировано в популярной прессе и популяризировано в книгах и телевизионных программах. Остальные части гипотезы Танияма-Шимура-Вейля, которые теперь были доказаны и известны как теорема о модульности, впоследствии были доказаны другими математиками, которые основывались на работе Уайлса в период между 1996 и 2001 годами. За свое достижение Уайлс был удостоен чести и получил многочисленные награды, в том числе, премию Абеля 2016 года.

Доказательство Уайлсом последней теоремы Ферма является частным случаем решения теоремы модульности для эллиптических кривых. Тем не менее, это самый известный случай столь масштабной математической операции. Вместе с решением теоремы Рибе, британский математик также получил доказательство последней теоремы Ферма. Последняя теорема Ферма и теорема о модульности почти повсеместно считались недоказуемыми современными математиками, но Эндрю Уайлс смог доказать всему научному миру, что даже ученые мужи способны заблуждаться.

Уайлс впервые объявил о своем открытии в среду 23 июня 1993 года на лекции в Кембридже под названием «Модульные формы, эллиптические кривые и представления Галуа». Однако в сентябре 1993 года было установлено, что его расчеты содержат ошибку. Год спустя, 19 сентября 1994 года, в том, что он назвал бы «самым важным моментом его трудовой жизни», Уайлс наткнулся на откровение, которое позволило ему исправить решение задачи до того уровня, когда оно сможет удовлетворить математическое сообщество.

Характеристика работы

Доказательство теоремы Ферма Эндрю Уайлсом использует многие методы из алгебраической геометрии и теории чисел и имеет много разветвлений в этих областях математики. Он также использует стандартные конструкции современной алгебраической геометрии, такие как категория схем и теория Ивасавы, а также другие методы XX века, которые не были доступны Пьеру Ферма.

Две статьи, содержащие доказательства, составляют 129 страниц, которые писались в течение семи лет. Джон Коутс описал это открытие как одно из величайших достижений теории чисел, а Джон Конвей назвал его главным математическим свершением 20 века. Уайлс, чтобы доказать последнюю теорему Ферма путем доказательства теоремы модульности для частного случая полустабильных эллиптических кривых, разработал действенные методы подъема модульности и открыл новые подходы к многочисленным другим проблемам. За решение последней теоремы Ферма он был посвящен в рыцари и получил другие награды. Когда стало известно, что Уайлс выиграл премию Абеля, Норвежская академия наук описала его достижение как «восхитительное и элементарное доказательство последней теоремы Ферма».

Как это было

Одним из людей, анализировавших первоначальную рукопись Уайлса с решением теоремы, был Ник Кац. В ходе своего обзора он задал британцу ряд уточняющих вопросов, которые заставили Уайлса признать, что его работа явно содержит пробел. В одной критической части доказательства была допущена ошибка, которая давала оценку для порядка конкретной группы: система Эйлера, используемая для расширения метода Колывагина и Флача, была неполной. Ошибка, однако, не сделала его работу бесполезной - каждая часть работы Уайлса была очень значительной и новаторской сама по себе, как и многие разработки и методы, которые он создал в ходе своей работы и которые затрагивали лишь одну часть рукописи. Тем не менее в этой первоначальной работе, опубликованной в 1993 году, действительно не было доказательства великой теоремы Ферма.

Уайлс провел почти год, пытаясь заново найти решение теоремы - сперва в одиночку, а затем в сотрудничестве со своим бывшим учеником Ричардом Тейлором, но все, казалось, было тщетным. К концу 1993 года распространились слухи, что при проверке доказательство Уайльса потерпело неудачу, но насколько серьезной была эта неудача, известно не было. Математики начали оказывать давление на Уайлса, чтобы он раскрыл детали своей работы, независимо от того, была она выполнена или нет, чтобы более широкое сообщество математиков могло исследовать и использовать все, чего ему удалось добиться. Вместо того, чтобы быстро исправить свою ошибку, Уайлс лишь обнаружил дополнительные сложные аспекты в доказательстве великой теоремы Ферма, и наконец-то осознал, насколько сложной она является.

Уайлс заявляет, что утром 19 сентября 1994 года он был на грани того, чтобы бросить все и сдаться, и почти смирился с тем, что потерпел неудачу. Он готов был опубликовать свою неоконченную работу, чтобы другие могли на ней основываться и найти, в чем он ошибся. Английский математик решил дать себе последний шанс и в последний раз проанализировал теорему, чтобы попытаться понять основные причины, по которым его подход не работал, как вдруг внезапно осознал, что подход Колывагина-Флака не будет работать, пока он не подключит к процессу доказательства еще и теорию Ивасавы, заставив ее работать.

6 октября Уайлс попросил трех коллег (включая Фалтинса) рассмотреть его новую работу, а 24 октября 1994 г. он представил две рукописи - «Модульные эллиптические кривые и последняя теорема Ферма» и «Теоретические свойства кольца некоторых Гекке-алгебр», вторую из которых Уайлс написал совместно с Тейлором и доказал, что были выполнены определенные условия, необходимые для оправдания исправленного шага в основной статье.

Эти две статьи были проверены и, наконец, опубликованы в качестве полнотекстового издания в журнале «Анналы математики» за май 1995 года. Новые расчеты Эндрю были широко проанализированы и научное сообщество в конце концов их признало. В этих работах была установлена теорема модульности для полустабильных эллиптических кривых - последний шаг к доказательству великой теоремы Ферма, спустя 358 лет после того, как она была создана.

История великой проблемы

Решение этой теоремы считалось самой большой проблемой в математике на протяжении многих столетий. В 1816 и в 1850 годах Французская академия наук предложила приз за общее доказательство великой теоремы Ферма. В 1857 году Академия присудила 3000 франков и золотую медаль Куммеру за исследования идеальных чисел, хотя он и не подавал заявку на приз. Еще одна премия была предложена ему в 1883 году Брюссельской академией.

Премия Вольфскеля

В 1908 году немецкий промышленник и математик-любитель Пауль Вольфскель завещал 100 000 золотых марок (большую сумму для того времени) Академии наук Геттингена, чтобы эти деньги стали призом за полное доказательство великой теоремы Ферма. 27 июня 1908 года Академия опубликовала девять правил награждения. Среди прочего, эти правила требовали опубликования доказательства в рецензируемом журнале. Приз должен был присуждаться лишь через два года после публикации. Срок конкурса должен был истечь 13 сентября 2007 - примерно через столетие после своего начала. 27 июня 1997 года Уайлс получил призовые деньги Вольфсхеля, а затем еще 50 000 долларов. В марте 2016 года он получил 600 000 евро от правительства Норвегии в рамках премии Абеля за «потрясающее доказательство последней теоремы Ферма с помощью гипотезы модульности для полустабильных эллиптических кривых, открывающей новую эру в теории чисел». Это был мировой триумф скромного англичанина.

До доказательства Уайлса теорема Ферма, как уже говорилось ранее, считалась абсолютно нерешаемой на протяжении целых столетий. Тысячи неверных доказательств в разное время были представлены комитету Вольфскеля, составив примерно 10 футов (3 метра) корреспонденции. Только в первый год существования премии (1907-1908) было подано 621 заявок с претензией на решение теоремы, хотя к 1970-м годам их количество уменьшилось примерно до 3-4 заявок в месяц. По мнению Ф. Шлихтинга, рецензента Вольфсхеля, большинство доказательств были основаны на элементарных методах, преподаваемых в школах, и часто представлялись «людьми с техническим образованием, но неудачной карьерой». По словам историка математики Говарда Эйвса, последняя теорема Ферма установила своеобразный рекорд - это теорема, набравшая наибольшее количество неверных доказательств.

Лавры Ферма достались японцам

Как уже говорилось ранее, примерно в 1955 году японские математики Горо Шимура и Ютака Танияма открыли возможную связь между двумя, по-видимому, совершенно разными отраслями математики - эллиптическими кривыми и модульными формами. Полученная в результате их исследований теорема модульности (в то время известная как гипотеза Таниямы-Шимуры) гласит, что каждая эллиптическая кривая является модулярной, что означает, что она может быть связана с уникальной модулярной формой.

Теория первоначально была отклонена как маловероятная или весьма спекулятивная, но была воспринята более серьезно, когда теоретик чисел Андре Вейль нашел доказательства, подтверждающие выводы японцев. В результате гипотеза часто называлась гипотезой Таниямы-Шимуры-Вейля. Она стала частью программы Langlands, представляющей собой список важных гипотез, требующих доказательства в будущем.

Даже после серьезного внимания, гипотеза была признана современными математиками как чрезвычайно трудная или, возможно, недоступная для доказательства. Теперь именно эта теорема ждет своего Эндрю Уайлса, который смог бы удивить весь мир ее решением.

Теорема Ферма: доказательство Перельмана

Не смотря на расхожий миф, российский математик Григорий Перельман, при всей своей гениальности, не имеет никакого отношения к теореме Ферма. Что, впрочем, никак не умаляет его многочисленных заслуг перед научным сообществом.